Receptive Field Optimisation and Supervision of a Fuzzy Spiking Neural Network
ثبت نشده
چکیده
This paper presents a supervised training algorithm that implements fuzzy reasoning on a spiking neural network. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be responsive to certain spike train frequencies and behave in a similar manner as fuzzy membership functions. The connectivity of the hidden and output layers in the fuzzy spiking neural network (FSNN) is representative of a fuzzy rule base. Fuzzy C-Means clustering is utilised to produce clusters that represent the antecedent part of the fuzzy rule base that aid classification of the feature data. Suitable cluster widths are determined using two strategies; subjective thresholding and evolutionary thresholding respectively. The former technique typically results in compact solutions in terms of the number of neurons, and is shown to be particularly suited to small data sets. In the latter technique a pool of cluster candidates are generated using Fuzzy C-Means clustering and then a genetic algorithm is employed to select the most suitable clusters and to specify cluster widths. In both scenarios, the network is supervised but learning only occurs locally as in the biological case. The advantages and disadvantages of the network topology for the Fisher Iris and Wisconsin Breast Cancer benchmark classification tasks are demonstrated and directions of current and future work are discussed.
منابع مشابه
Receptive field optimisation and supervision of a fuzzy spiking neural network
This paper presents a supervised training algorithm that implements fuzzy reasoning on a spiking neural network. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be responsive to certain spike train firing rates and behave in a similar manner as fuzzy membership functions. The connectivity of the hidden and output layers in the fuzzy spiking neural netw...
متن کاملFuzzy Based Modified SHL algorithm for Spiking Neural Networks
Spiking neural network is the 3 generation neural network. In this paper, we derive spiking neural network‘s topology and the fuzzy reasoning by restricting to the usage of biological components. Input encodes information in the timing of spike train. Fuzzy reasoning is used on biological components such as dynamic synapse, receptive field, inhibitory and excitatory neurons. The enrichment of t...
متن کاملImplementing Fuzzy Reasoning on a Spiking Neural Network
This paper presents a supervised training algorithm that implements fuzzy reasoning on a spiking neural network. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be responsive to certain spike train frequencies. The receptive fields behave in a similar manner as fuzzy membership functions. The network is supervised but learning only occurs locally as in...
متن کاملNeural Nets SELF-LEARNING FUZZY SPIKING NEURAL NETWORK AS A NONLINEAR PULSE-POSITION THRESHOLD DETECTION DYNAMIC SYSTEM BASED ON SECOND-ORDER CRITICALLY DAMPED RESPONSE UNITS
Abstract: Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be ea...
متن کاملReceptive Field Encoding Model for Dynamic Natural Vision
Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...
متن کامل